Rambler's Top100
"Knowledge itself is power"
F.Bacon
Поиск | Карта сайта | Помощь | О проекте | ТТХ  
 Сокровищница
  
 

Фильтр по датам

 
 К н и г и
 
Книжная полка
 
 
Библиотека
 
  
  
 


Поиск
 
Поиск по КС
Поиск в статьях
Яndex© + Google©
Поиск книг

 
  
Тематический каталог
Все манускрипты

 
  
Карта VCL
ОШИБКИ
Сообщения системы

 
Форумы
 
Круглый стол
Новые вопросы

 
  
Базарная площадь
Городская площадь

 
   
С Л С

 
Летопись
 
Королевские Хроники
Рыцарский Зал
Глас народа!

 
  
ТТХ
Конкурсы
Королевская клюква

 
Разделы
 
Hello, World!
Лицей

Квинтана

 
  
Сокровищница
Подземелье Магов
Подводные камни
Свитки

 
  
Школа ОБЕРОНА

 
  
Арсенальная башня
Фолианты
Полигон

 
  
Книга Песка
Дальние земли

 
  
АРХИВЫ

 
 

Сейчас на сайте присутствуют:
 
  
 
Во Флориде и в Королевстве сейчас  19:30[Войти] | [Зарегистрироваться]

Алгоритм обхода препятствий

Алексей Моисеев
дата публикации 10-04-2000 00:00

Алгоритм обхода препятствий

Примечание:
Данный материал не является аналитическим, в нем не описываются особенности алгоритма, оценки его эффективности и т.д.
Автором предоставлен проект реализующий этого алгоритм и краткое пояснение к конкретной реализации.

Елена Филиппова


Предлагаемый алгоритм обхода препятствий - это, так называемый, обобщенный алгоритм Дейкстры. В англоязычной литературе он называется алгоритмом A*.

  • 1. Карта разбита на квадратные части, назовем их клетками.
  • 2. Каждая клетка имеет несколько показателей:
    • 1) стоимость прохождения по этой клетке,
    • 2) предыдущая клетка - клетка из которой пришли в эту клетку,
    • 3) статус клетки (непосещенная, граничная, отброшенная),
    • 4) оценка пройденного пути,
    • 5) оценка оставшегося пути.
  • 3. Имеется две клетки - начальная и конечная.
  • 4. Сосед клетки - клетка в которую можно попасть из рассматриваемой за 1 шаг.
Общий принцип: на каждой итерации из всех граничных точек выбирается та, для которой сумма уже пройденного пути и пути до конца по прямой является минимальной, и от нее осуществляется дальнейшее продвижение.

Алгоритм этот проще реализовать, чем описать:

Start - начальная клетка
Finish - конечная клетка.
Алгоритм итерационный
1 шаг: Помечаем Start как граничную точку.
2 шаг: Среди всех граничных точек находим Клетку1 - клетку с минимальной суммой оценки пройденного пути g и оценки оставшегося пути h.
3 шаг: Для Клетки 1 рассматриваем соседей. Если сосед имеет статус непосещенного, то мы обозначаеми его как граничную клетку, и указываем Клетку1 как предыдущую для него. Оценку g1 для соседа принимаем равной g+p, где p-стоимость прохождения по клетке сосед, а g - оценка пройденного пути для Клетки1 . Оценка h для любой клетки равна длине кратчайшего пути (по прямой от рассматриваемой клетки до клетки Finish) Рассматриваемую Клетку1 помечаем как отброшенную.
4 шаг: Если на предыдущем шаге один из соседей оказался равен клетке Finish, то путь найден. Если ни одного нового соседа не существует, то нет и пути.
5 шаг: Переход на шаг 2.

Буду рад любым предложениям по оптимизации, так как меня, к сожалению, не устраивает быстродействие.



К материалу прилагаются файлы:


Смотрите также материалы по темам:
[Задачи оптимизации] [Программирование игр.]

 Обсуждение материала [ 05-06-2009 03:35 ] 26 сообщений
  
Время на сайте: GMT минус 5 часов

Если вы заметили орфографическую ошибку на этой странице, просто выделите ошибку мышью и нажмите Ctrl+Enter.
Функция может не работать в некоторых версиях броузеров.

Web hosting for this web site provided by DotNetPark (ASP.NET, SharePoint, MS SQL hosting)  
Software for IIS, Hyper-V, MS SQL. Tools for Windows server administrators. Server migration utilities  

 
© При использовании любых материалов «Королевства Delphi» необходимо указывать источник информации. Перепечатка авторских статей возможна только при согласии всех авторов и администрации сайта.
Все используемые на сайте торговые марки являются собственностью их производителей.

Яндекс цитирования